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THE RELATIONSHIP BETWEEN THE POWERS OF AN
INVERTIBLE MATRIX AND THOSE OF ITS INVERSE

Mohammed Mouçouf*

Abstract. In the current paper, we establish the relationship be-
tween the powers of an invertible matrix and the powers of its in-
verse. More precisely, we prove that if A is an invertible matrix and,
if An = (Ai,j(n)) for all positive integer n, then A−n = (Ai,j(−n)).

1. Introduction

Different kinds of matrices play very important roles in several scien-
tific works, where the integral powers of these matrices are often used.

There are two common methods for finding positive integer powers
of square matrices. The first method uses the diagonal form for diag-
onalizable matrices and the Jordan normal form for non-diagonalizable
matrices. The second method consists in using the Cayley-Hamilton
theorem. But if we want to determine integer powers of a square invert-
ible matrix A, we compute the positive powers An, we also compute A−1

and we raise A−1 to the positive integers n or else to prove by induction
on n that the formula obtained for positive powers An is still true when
n is negative.
In the case where A is a 2 × 2 complex matrix, the study of a suitable
recursive sequence allows us to obtain an explicit form of the elements
of An for all positive integers n (see [2]). It can be easily verified when A
is invertible that if we replace n by −n in the elements of An obtained,
we get the matrix A−n.

In this paper, we prove that the same result holds for any invertible
complex matrix A. We shall give the proof using only combinatorial
relations and the Jordan form.
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2. Proof of the result

Let A be any square matrix, and let A(n) denote the sequence of
matrices defined by A(n) = (Ai,j(n))i,j for all positive integers n, where
Ai,j(n) are the elements of An. From the definition of matrix multipli-
cation, the sequence A(−n) = (Ai,j(−n))i,j is also well-defined for all
n ∈ N. Of course, if Ai,j(n) = c is a constant sequence for a given i, j,
then Ai,j(−n) = c.

Theorem 2.1. Let A be a complex square invertible matrix of order
p. Then A−1(n) = A(−n) for all positive integers n.

Proof. Let A be a complex square matrix with order p. It is well
known from Linear Algebra that A has the following decomposition

A = T−1JT,

where J is a Jordan matrix, and T is some non-singular matrix. The
Jordan matrix J has the form

J =




Jp1(λ1)
. . .

Jpk
(λk)


 ,

where

Jpi(λi) =




λi 1

λi
. . .
. . . 1

λi




is a Jordan block of size pi with eigenvalue λi.
Since A(n) = T−1J(n)T and

J(n) =




Jp1(λ1)n

. . .
Jpk

(λk)n




for all positive integers n, then we may assume without any loss of
generality that A = Jp(λ) is a Jordan block.
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Newton’s binomial formula gives

A(n) =




λn

(
n

1

)
λn−1 · · ·

(
n

p− 1

)
λn−p+1

0
. . .

...
...

. . . . . .
(

n

1

)
λn−1

0 · · · 0 λn




= (Ai,j(n)),

where
(

n

k

)
=

n!
k!(n− k)!

, with the convention that
(

n

k

)
= 0 for k > n,

and

Ai,j(n) =





0 if j < i
λn if i = j(

n

j − i

)
λn−(j−i) if i < j

If we replace n by −n in this matrix, we obtain the following one

A(−n) =




λ−n

(−n

1

)
λ−n−1 · · ·

( −n

p− 1

)
λ−n−p+1

0
. . .

...
...

. . . . . .
(−n

1

)
λ−n−1

0 · · · 0 λ−n




,

where

A(−n)i,j =





0 if j < i
λ−n if j = i( −n

j − i

)
λ−n−(j−i) if i < j

and

(−n

k

)
=





−n(−n− 1) . . . (−n− k + 1)
k!

if k 6= 0
1 if k = 0
0 if k > n.

If we set A(−n)A(n) = (Di,j), then it is clear that Di,i = 1 and Di,j = 0
if 1 ≤ j < i ≤ p, so it remains to show that Di,j = 0 if 1 ≤ i < j ≤ p.
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Let (i, j) be a pair of integers with 1 ≤ i < j ≤ p. Then we have

Di,j =
p∑

k=1

A(−n)i,kAk,j(n)

=
j∑

k=i

A(−n)i,kAk,j(n)

=
j∑

k=i

( −n

k − i

)
λ−n−(k−i)

(
n

j − k

)
λn−(j−k)

= λi−j
j∑

k=i

( −n

k − i

)(
n

j − k

)

= λi−j
j−i∑

k=0

(−n

k

)(
n

j − i− k

)
.

So it is enough to show that for every integer m with 1 ≤ m ≤ n, we
have the following formula

m∑

k=0

(−n

k

)(
n

m− k

)
= 0.

Since (−n

k

)
= (−1)k (n + k − 1) · · ·n

k!

= (−1)k

(
n + k − 1

n− 1

)
,

then
m∑

k=0

(−n

k

)(
n

m− k

)
=

m∑

k=0

(−1)k

(
n + k − 1

n− 1

)(
n

m− k

)

= n

m∑

k=0

(−1)k

n + k

(
n + k

m

)(
m

k

)
.

To show that
m∑

k=0

(−1)k

n + k

(
n + k

m

)(
m

k

)
= 0, we consider the following

polynomial
P (X) = Xm(X + 1)n−1.
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By using the Newton’s binomial formula, we find that

P (X) = (X + 1− 1)m(X + 1)n−1

= (X + 1)n−1(
m∑

k=0

(−1)m−k

(
m

k

)
(X + 1)k)

=
m∑

k=0

(−1)m−k

(
m

k

)
(X + 1)n+k−1.

So we have shown that P (X) can be written in two different forms. We
are now going to compute the coefficient of the monomial Xm in the
primitive of P (X) using these two forms.
The second form of P (X) gives

∫
P (X) =

m∑

k=0

(−1)m−k

n + k

(
m

k

)
(X + 1)n+k

=
m∑

k=0

(−1)m−k

n + k

(
m

k

)
(
n+k∑

i=0

(
n + k

i

)
Xi).

Since m ≤ n, then m ≤ n + k for all k ≥ 0. Therefore Xm appears in
∑n+k

i=0

(
n + k

i

)
Xi for each k ≥ 0. Then the coefficient of Xm in

∫
P (X)

is equal to
m∑

k=0

(−1)m−k

n + k

(
m

k

)(
n + k

m

)
.

Now since

P (X) = Xm(
n−1∑

k=0

(
n− 1

k

)
Xk)

=
n−1∑

k=0

(
n− 1

k

)
Xk+m,

then ∫
P (X) =

n−1∑

k=0

(
n− 1

k

)
1

k + m + 1
Xk+m+1,

which means that the coefficient of Xm in
∫

P (X) is 0. This proves

that
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m∑

k=0

(−1)m−k

n + k

(
m

k

)(
n + k

m

)
= 0, and hence

m∑

k=0

(−1)k

n + k

(
m

k

)(
n + k

m

)
=

0.
This completes the proof of the theorem.

Remark 2.2. If A is an involutory matrix, the sequence A(n) is even.

Example 2.3. Let A = (ai,j) be the invertible matrix of even order
m, defined by





ai,i+1 = ai+1,i = 1 for i = 1, 3, 4, . . . ,m− 1
ai,i = 2 for i = 2, 4, 6, . . . ,m
0, otherwise.

In [1], it was shown that A(n) = An = (ci,j) where




ci−1,i−1 = 1
α−β [βnα− βαn]

ci,i = 1
α−β [αn+1 − βn+1]

ci−1,i = 1
α−β [αn − βn]

ci,i−1 = ci−1,i

0, otherwise

i = 2, 4, 6, . . . ,m, α = 1 +
√

2 and β = 1−√2.
Replacing n by −n in the above entries, one obtains

A(−n) =





bi−1,i−1 = 1
α−β [β−nα− βα−n]

bi,i = 1
α−β [α−n+1 − β−n+1]

bi−1,i = 1
α−β [α−n − β−n]

bi,i−1 = bi−1,i

0, otherwise

where i = 2, 4, 6, . . . , m.
Now if we take n = 1, we find that

A(−1) =





bi−1,i−1 = −(α + β) = −2
bi,i−1 = bi−1,i = 1
0, otherwise

where we have used the fact that αβ = −1. One can easily verify that
A(−1)A = Im, which shows that A is invertible and A−1 = A(−1).
Then, by using the theorem, one gets A−n = A(−n). Now if we replace
α−n by (−β)n and β−n by (−α)n, we obtain exactly the same result as
in [1].
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